Researchers Crack Final Part Of The Immune System Code

A group of researchers at the Technical University of Denmark and the University of Copenhagen have developed models of neural networks that make it possible to simulate how the body protects itself from disease and predict the immune system’s access codes. The human body has its own natural inbuilt defence mechanism which uses access or “pincodes” to stop microorganisms that invade the body from discovering how the entire human immune system works. Every human being on the planet has their own unique version of this defence mechanism. But the sheer complexity of the immune system has, up until now, also made it difficult for researchers to understand how the immune system functions and develop precise immunological treatments. Last year, the research team led by Associate Professor Morten Nielsen and Professor Søren Buus successfully decoded some of the pincodes. Now, the team has completed work on their project and put together a complete picture of how the immune system checks the inner and outer components of our cells for dangerous invaders. The research could have significant consequences for the treatment of cancer, infectious diseases and also for transplant operations.

Perspectives: Decoding the immune system to target disease

For the individual patient, the artifical neural networks mean that if scientists can identify the patient’s tissue type molecules (pincodes), they can then predict all the possible samples that would be taken by the tissue type molecules and displayed in the two display windows. If the patients own immune system, for example, does not react to a particular disease the knowledge could be used to stimulate (find, isolate and produce) the necessary T cells that can see the disease antigens (viruses, cancer cells etc). On a global scale, the neural network method could help researchers to deal with all the variants/single components of a global epidemic.

“We’ll be able to find candidates for vaccines which can both help the individual as well as the whole of humanity” explains professor Søren Buus. The neural networks provide the most comprehensive knowledge of the immune system to date.


Leave a Reply