Tag Archives: medicine

A Startup That Builds Biological Parts

 In a warehouse building in Boston, wedged between a cruise-ship drydock and Au Bon Pain’s corporate headquarters, sits Ginkgo BioWorks, a new synthetic-biology startup that aims to make biological engineering easier than baking bread. Founded by five MIT scientists, the company offers to assemble biological parts–such as strings of specific genes–for industry and academic scientists.

“Think of it as rapid prototyping in biology–we make the part, test it, and then expand on it,” says Reshma Shetty, one of the company’s cofounders. “You can spend more time thinking about the design, rather than doing the grunt work of making DNA.” A very simple project, such as assembling two pieces of DNA, might cost $100, with prices increasing from there.

Synthetic biology is the quest to systematically design and build novel organisms that perform useful functions, such as producing chemicals, using genetic-engineering tools. The field is often considered the next step beyond metabolic engineering because it aims to completely overhaul existing systems to create new functionality rather than improve an existing process with a number of genetic tweaks.

Source

This is the stuff we need.

Why bother repairing our failing tissues for decades on end when you can just replace them with new ones?

From an engineering standpoint, this is just a plain and simple practical solution!

Making Fat Disappear

Can burning excess fat be as easy as exhaling? That’s the finding of a provocative new study by researchers at the University of California, Los Angeles (UCLA), who transplanted a fat-burning pathway used by bacteria and plants into mice. The genetic alterations enabled the animals to convert fat into carbon dioxide and remain lean while eating the equivalent of a fast-food diet.

The feat, detailed in the current issue of Cell Metabolism introduces a new approach to combating the growing obesity problem in humans. Although the proof-of-concept study is far from being tested in humans, it may point to new strategies for borrowing biological functions from bacteria and other species to improve human health.

To create the fat-burning mice, the researchers focused on a metabolic strategy used by some bacteria and plants called the glyoxylate shunt. James Liao, a biomolecular-engineering professor at UCLA and a senior author of the study, says, “This pathway is essential for the cell to convert fat to sugar” and is used when sugar is not readily available or to convert the fat stored in plant seeds into usable energy. Liao also says that it’s not known why mammals lack this particular strategy, although it may be because our bodies are designed to store fat rather than burn it.

Source

The Human Genome: Yours for $48,000

The cost of a personal genome has dropped from about the price of a luxury sedan to, well, the price of a slightly less luxurious nice car. Illumina, a genomics technology company headquartered in San Diego, announced the launch of a $48,000 genome-sequencing service at the Consumer Genetics Conference in Boston on Wednesday.

It won’t be the first consumer genome service–Knome, a startup in Cambridge, MA, already offers genome sequencing for just under $100,000–but Illumina is the first company preparing to offer high-volume personal-genome sequencing. Knome, which uses Illumina technology to perform its sequencing, is a boutique service that offers both genome analysis and interpretation.

Many within the genomics industry believe that, as soon as the price is right, an individual’s genome will be sequenced routinely and become part of her medical record. Within the genome lie clues to each person’s risk for disease, his or her reaction to different medications, and other medically useful information.

Source

Reboot Your Brain? Science Says It’s Possible -A Galaxy Insight

receptors

Contrary to popular belief, recent studies have found that there are probably ways to regenerate brain matter.

Animal studies conducted at the National Institute on Aging Gerontology Research Center and the Johns Hopkins University School of Medicine, for example, have shown that both calorie restriction and intermittent fasting along with vitamin and mineral intake, increase resistance to disease, extend lifespan, and stimulate production of neurons from stem cells.

In addition, fasting has been shown to enhance synaptic elasticity, possibly increasing the ability for successful re-wiring following brain injury. These benefits appear to result from a cellular stress response, similar in concept to the greater muscular regeneration that results from the stress of regular exercise.

Additional research suggests that increasing time intervals between meals might be a better choice than chronic calorie restriction, because the resultant decline in sex hormones may adversely affect both sexual and brain performance. Sex steroid hormones testosterone and estrogen are positively impacted by an abundant food supply. In other words, you might get smarter that way, but it might adversely affect your fun in the bedroom, among other drawbacks.

Source

The Pentagon’s Bionic Arm

When Americans are wounded in Afghanistan or Iraq, no expense is spared to save their lives. But once they’re home, if they have suffered an amputation of their arm, they usually end up wearing an artificial limb that hasn’t changed much since World War II.

In all the wonders of modern medicine, building a robotic arm with a fully functioning hand has not been remotely possible.

But as 60 Minutes correspondent Scott Pelley reports, that is starting to change. One remarkable leap in technology is called the DEKA arm and it’s just one of the breakthroughs in a $100 million Pentagon program called “Revolutionizing Prosthetics.”

Fred Downs has been wearing the standard prosthetic arm since 1968, after he stepped on a landmine in Vietnam.

“It’s a basic hook. And I can rotate the hook like this and lock it,” Downs told Pelley, demonstrating the limited movement ability of his prosthetic arm. “In those days they didn’t have a lot of sophistication about it. They fit you and say, ‘This is your arm, this is your leg.’ And it was the best technology in those days and you just had to make yourself learn how to use it and I did.”

Today, Downs is the head of prosthetics for the Veterans Health Administration. He told Pelley the technology used for his arm was developed during the World War II era.

“There’s a hook, something out of Peter Pan. And that’s just unacceptable,” Dr. Geoffrey Ling, an Army colonel and neurologist who’s leading the Revolutionizing Prosthetics program, told Pelley

Col. Ling is a physician with big dreams and little patience, especially when touring Walter Reed Army Medical Center and meeting the troops he’s working for. “We have a saying in the military, ‘Leave no one behind.’ And we are very serious about that. And that doesn’t mean just on the battlefield, but also back at home,” he said.

source

Iranian scientists claim they have cloned a goat

clonedgoat

Iranian scientists have cloned a goat and plan future experiments they hope will lead to a treatment for stroke patients, the leader of the research said Wednesday. The female goat, named Hana, was born early Wednesday in the city of Isfahan in central Iran, said Dr. Mohammed Hossein Nasr e Isfahani, head of the Royan Research Institute.

“With the birth of Hana, Iran is among five countries in the world cloning a baby goat,” said Isfahani, an embryologist.

In 2006 Iran became the first country in the Middle East to announce it had cloned a sheep. Two and a half years later, that animal is healthy, the institute said.

The effort is part of Iran’s quest to become a regional powerhouse in advanced science and technology by 2025. In particular, Iran is striving for achievements in medicine and in aerospace and nuclear technology.

Iran’s nuclear work has led to an international showdown over Western claims that it wants to develop atomic weapons. Iran says its nuclear activity is aimed at generating electricity, not the bomb.

The cloning of sheep and other animals could lead to advances in medical research, including using cloned animals to produce human antibodies against diseases, Isfahani said.

source

Medicine goes digital

The convergence of biology and engineering is turning health care into an information industry. That will be disruptive, says Vijay Vaitheeswaran (interviewed here), but also hugely beneficial to patients.

Innovation and medicine go together. The ancient Egyptians are thought to have performed surgery back in 2750BC, and the Romans developed medical tools such as forceps and surgical needles. In modern times medicine has been transformed by waves of discovery that have brought marvels like antibiotics, vaccines and heart stents.

Given its history of innovation, the health-care sector has been surprisingly reluctant to embrace information technology (IT). Whereas every other big industry has computerised with gusto since the 1980s, doctors in most parts of the world still work mainly with pen and paper.

But now, in fits and starts, medicine is at long last catching up. As this special report will explain, it is likely to be transformed by the introduction of electronic health records that can be turned into searchable medical databases, providing a “smart grid” for medicine that will not only improve clinical practice but also help to revive drugs research. Developing countries are already using mobile phones to put a doctor into patients’ pockets. Devices and diagnostics are also going digital, advancing such long-heralded ideas as telemedicine, personal medical devices for the home and smart pills.

The first technological revolution in modern biology started when James Watson and Francis Crick described the structure of DNA half a century ago. That established the fields of molecular and cell biology, the basis of the biotechnology industry. The sequencing of the human genome nearly a decade ago set off a second revolution which has started to illuminate the origins of diseases.

source

Researchers Find That Genes Determine Brain’s Processing Speed

In a study published recently in the Journal of Neuroscience, UCLA neurology professor Paul Thompson and colleagues used a new type of brain-imaging scanner to show that intelligence is strongly influenced by the quality of the brain’s axons, or wiring that sends signals throughout the brain. The faster the signaling, the faster the brain processes information. And since the integrity of the brain’s wiring is influenced by genes, the genes we inherit play a far greater role in intelligence than was previously thought.

Genes appear to influence intelligence by determining how well nerve axons are encased in myelin — the fatty sheath of “insulation” that coats our axons and allows for fast signaling bursts in our brains. The thicker the myelin, the faster the nerve impulses.

Thompson and his colleagues scanned the brains of 23 sets of identical twins and 23 sets of fraternal twins. Since identical twins share the same genes while fraternal twins share about half their genes, the researchers were able to compare each group to show that myelin integrity was determined genetically in many parts of the brain that are key for intelligence. These include the parietal lobes, which are responsible for spatial reasoning, visual processing and logic, and the corpus callosum, which pulls together information from both sides of the body.

source

Future shock: The PC of 2019

For those of you who want the world at your fingertips, the wait is almost over.

The future PC promises to put nearly everything you could need or want right in your palm.

Think of a souped-up version of today’s smartphone, with a monitor that unrolls into a larger screen and a biometric security system that lets you access everything in your professional and personal life from anywhere, with all the data residing in the cloud. Wave it at your car to unlock the door. Order and pay for your morning coffee with a touch of a button. Plug it into a docking station and project that big presentation to your clients. Book a weekend getaway with just a few clicks.

“PCs are going from engines or tools to portals and enablers. The vision of what they’ll be in the future is a partner. They’ll be participating in the higher cognitive tasks of what people do to get their jobs done,” says Andrew Chien, director of research at Intel Corp.

The personal computer has been a corporate workhorse for decades. And while it has evolved, becoming slimmer and more mobile, in many ways it still resembles those old terminals tethered to the mainframe. But the next decade will bring dramatic changes, as the PC evolves past the standard desktop and laptop units to amalgamations of computing devices and their peripherals.

This future PC will be smarter, too. It could discreetly remind you of the name of an acquaintance and alert you when it’s time to take your medicine. It will be your colleague, your butler — and possibly your friend.

source

Stem-Cell Repair Kit for Stroke

A novel matrix of neural stem cells and a biodegradable polymer can quickly repair brain damage from stroke in rats. Within just seven days of injecting the concoction directly into the damaged part of the brain, new nerve tissue grew to fill stroke-induced cavities.

Scientists say that the key to the advance, published today in the journal Biomaterials, is the use of a biodegradable polymer called PLGA, which ensures that the stem cells remain in the area of stroke damage and establish connections with surrounding brain tissue. By reducing the number of stray stem cells, the system is likely to be safer as well as more effective than other methods, the researchers add.

Strokes, which occur due to bleeds or blocked blood vessels in the brain, cause some brain tissue to die. This dead tissue is then removed by the immune system, leaving a hole. “We would expect to see a much better improvement in the outcome after a stroke if we can fully replace the lost brain tissue, and that is what we have been able to do with our technique,” says Mike Modo, a neurobiologist at the Institute of Psychiatry at King’s College London, who oversaw the research.

source